Angebote zu "Belief" (10 Treffer)

Kategorien

Shops

Deep Learning. Das umfassende Handbuch
118,00 CHF *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemässer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: Orell Fuessli CH
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
82,30 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: Thalia AT
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
118,00 CHF *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemässer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: Orell Fuessli CH
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
85,00 CHF *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemässer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: Orell Fuessli CH
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
69,99 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: Thalia AT
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
82,30 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.Teil I: Angewandte Mathematik und Grundlagen für das Machine LearningLineare AlgebraWahrscheinlichkeits- und InformationstheorieBayessche StatistikNumerische Berechnung Teil II: Deep-Learning-VerfahrenTiefe Feedforward-NetzeRegularisierungOptimierung beim Trainieren tiefer ModelleConvolutional Neural NetworksSequenzmodellierung für Rekurrente und Rekursive NetzePraxisorientierte MethodologieAnwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-ForschungLineare FaktorenmodelleAutoencoderRepresentation LearningProbabilistische graphische ModelleMonte-Carlo-VerfahrenDie PartitionsfunktionApproximative InferenzTiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: buecher
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
80,00 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.Teil I: Angewandte Mathematik und Grundlagen für das Machine LearningLineare AlgebraWahrscheinlichkeits- und InformationstheorieBayessche StatistikNumerische Berechnung Teil II: Deep-Learning-VerfahrenTiefe Feedforward-NetzeRegularisierungOptimierung beim Trainieren tiefer ModelleConvolutional Neural NetworksSequenzmodellierung für Rekurrente und Rekursive NetzePraxisorientierte MethodologieAnwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-ForschungLineare FaktorenmodelleAutoencoderRepresentation LearningProbabilistische graphische ModelleMonte-Carlo-VerfahrenDie PartitionsfunktionApproximative InferenzTiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: buecher
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch (eBook, ...
69,99 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-VerfahrenDie Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: buecher
Stand: 06.12.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch (eBook, ...
69,99 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-VerfahrenDie Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: buecher
Stand: 06.12.2019
Zum Angebot

Ähnliche Suchbegriffe